
A Benchmarking Environment for Performance

Evaluation of Tree-based Rekeying Algorithms

Abstract

1. Introduction

While multicast is an efficient solution for group communication over the

Internet, it raises a key management problem when data encryption is de-

sired. This problem originates from the fact that the group key used to
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While a vast number of solutions to multicast group rekeying were pub-

lished in the last years, a common base to evaluate these solutions and com-

pare them with each other is still missing. This paper presents a unified way

to evaluate the performance of different rekeying algorithms running on the

server side. A rekeying benchmark estimates rekeying costs from a system

point of view, which allows a reliable comparison between different rekey-

ing algorithms. For this purpose, new system metrics related to rekeying

performance are defined: the Join Rekeying Time (JRT) and the Disjoin

Rekeying Time (DRT). By means of four simulation modes, these metrics

are estimated in relation to both the group size and the group dynamics. A

benchmark prototype, implemented in Java, demonstrates the merit of this

unified assessment method by means of two comprehensive case studies.
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problem arises.  

 

Fig. 1. Pay-TV a potential scenario for secure multicast 

 

This problem has been thoroughly addressed in the last decade to reduce the rekeying costs 

and to achieve a scalable group key management. A large variety of architectures, protocols, and 

algorithms have been proposed in literature, see [1-14]. Regardless of the quality of the proposed 

approaches, the reader of related publications misses a way to compare the results of these 

solutions to each other. This is attributed mainly to vastly different ways of estimating rekeying 

costs by different researchers and to the application of highly diverse metrics to express these 

costs. In the scope of this work, this problem is denoted as the rekeying performance evaluation 

problem. 

In this paper a rekeying benchmark is presented, which allows for a reliable rekeying 

performance evaluation and, thus, for a meaningful comparison of different rekeying algorithms. 

The evaluation reliability is based on a concept, which describes rekeying costs on system level 

independent of the evaluated rekeying algorithms and of the underlying cryptographic primitives 

or execution platform. The rekeying benchmark is realized a simulator, which supports the 

execution of different rekeying algorithms with uniform simulation parameters. The simulator 

k0 

k1 

k3 

m0 

m1 

m2 

m3 

Registration & 
Authentication  
Server (RAS) 

Video Server  
(VS) 

Encrypted  
Video 

Ek0(kg) 
Ek1(kg) 

Ek3(kg) 

Video Provider (VP) 

Multicast 
Network 

k2 

Figure 1: Pay-TV a potential scenario for secure multicast

encrypt data is shared between many members, which demands the update

of this key every time a member leaves the group or a new one joins it. The

process of updating and distribution of the group key, denoted as group rekey-

ing, ensures forward access control regarding leaving members and backward

access control concerning the joining ones. Figure 1 represents a Pay-TV

environment as an example for a multicast scenario. A video provider (VP)

utilizes a video server (VS) to deliver video content encrypted with a group

key kg. A registration and authentication server (RAS) manages the group

and performs group rekeying. Every registered member gets an identity key

kd (e.g., k0 to k3 in Figure 1) and the group key kg. To disjoin member m2,

for instance, the RAS generates a new group key and encrypts it with each

of the identity keys of the remaining members. In other words, disjoining a

member from a group having n participants costs a total of n−1 encryptions

on the server side. Obviously, a scalability problem arises.

This problem has been amply addressed in the last decade to reduce the

rekeying costs and to achieve a scalable group key management. A large
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variety of architectures, protocols, and algorithms have been proposed in

literature, see [1] to [14]. Although many approaches have been proposed,

the reader of related publications lacks a way to compare the results of these

solutions to each other. This is attributed mainly to vastly different ways of

estimating rekeying costs by different researchers and to the application of

highly diverse metrics to express these costs. In the scope of this work, this

problem is denoted as the rekeying performance evaluation problem.

In this paper a rekeying benchmark is presented, which allows for a reliable

rekeying performance evaluation and for fair comparison between different

rekeying algorithms. This originates from evaluating the rekeying perfor-

mance on a high abstraction level: Rekeying costs are determined on the

system level independent of the evaluated rekeying algorithms themselves

and regardless of the underlying cryptographic primitives and execution plat-

form. The rekeying benchmark is realized by a simulator, which supports the

execution of different rekeying algorithms with uniform simulation parame-

ters. The simulator estimates unified cost metrics and presents simulation

results in the same diagram for comparison.

Group key management schemes may be centralized or distributed. Cen-

tralized schemes rely on a signle trusted point and are, therefore, more ap-

propriate for applications with high security requirements such as banking

or paid services such as Pay-TV over IPTV. The proposed benchmark deals

with rekeying algorithms for this type of key management schemes.

The rekeying benchmark considers only the costs of cryptographic opera-

tions required for rekeying on the server side, which dominate the total cost

in most cases. Including other factors is part of future work.



The rest of the paper is organized as follows. Section 2 details the rekeying

performance evaluation problem. Section 3 represents the design concept of

the proposed rekeying benchmark and Section 4 describes the realization of

this concept as a simulation environment. Section 5 details the benchmark

design and Section 6 outlines its implementation. To show the advantage of

this solution Section 7 provides two case studies.

2. Rekeying Performance Evaluation Problem

A typical problem in scientific work relates to the analysis and evaluation

of own results and comparing them with those of related work. This prob-

lem, on the one hand, can be attributed to the increasing number of scientific

institutions and the vast publication possibilities. This trend hinders a com-

prehensive overview of the state-of-the-art situation in some scientific field.

On the other hand, some research areas - because of their novelty, complexity,

or both - lack a unified way of drawing these comparisons. This situation,

for instance, does not apply to Advanced Encryption Standard (AES) [16]

due to the availability of recognized performance metrics for block ciphers

which are throughput and latency. On the contrary, such unified metrics are

still missing for estimating the performance of rekeying algorithms, which

is caused by both the novelty of this problem area and its complexity. This

complexity, however, did not only result in largely different metrics to express

rekeying performance, but also in diverse ways of estimating these metrics.

In this respect, the reader of proposed work on multicast group rekeying

is not only confronted with different performance quantities, but also with

various estimation methods such as analytical modeling, simulation-based
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approaches, and real-time measurement using provisional prototypes. Each

one of these techniques has specific constraints and drawbacks, which can be

outlined in the following points:

Analytical approaches. These approaches are always based on simplified mod-

els and relate to special cases such as full balanced trees in tree-based ap-

proaches. As a rule, rekeying performance can only be expressed by abstract

numbers of some primitive operations, e.g., the number of encryptions for

borderline cases, such as worst-case or best-case analysis.

Simulation-based approaches. These approaches are mostly used to prove a

presented analytical investigation without model enhancement and without

including sophisticated effects such as group dynamics.

Measurement approaches. These approaches deliver results, which are strongly

dependent on the deployed cryptographic primitives, their implementation,

and on the platform they run on.

Furthermore, the performance of group rekeying is influenced by several

factors reflecting the group state and dynamics, on the one hand, and by some

algorithm-specific parameters such as the tree degree in tree-based solutions,

on the other. Accordingly, two questions arise for performance estimation:

Which factors must be taken into consideration, and how should they be

included as variables or as parameters? Again, largely different answers are

given to these questions in related work.

In summary, the difficulty of evaluating different rekeying algorithms is

attributed to the following three points:

1. Non-unified performance estimation methods.
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2. Non-unified consideration of the input quantities affecting the perfor-

mance.

3. Non-unified definition of output metrics representing the performance.

Table 1 gives a representative view of this situation in related work. Note

that an input quantity can be considered either as a variable or as a param-

eter. A parameter is a variable which is kept constant in some evaluation

process.

The different ways of looking at rekeying performance do not only ob-

struct an objective assessment of the corresponding algorithms, but also give

an explanation of some inconsistencies in the conclusions drawn by some

related work. Section 7 details this situation by means of two case studies.

3. Rekeying Benchmark Design Concept

3.1. Benchmark Abstraction Model

Rekeying is a solution for group key management in secure multicast. As

an essential step in the process of joining and removing members, rekeying

performance directly influences the efficiency of this process with major ef-

fects on the system behavior. The faster a member can be removed the higher

is the system security. The faster a member can be joined the higher is the

system quality of service. The performance of a rekeying algorithm directly

affects the supportable group size and dynamics. Accordingly, the impor-

tance of rekeying performance results from its significance for the system

behavior with respect to the following characteristics:

1. Amount of quality of service that can be offered to a joining member.
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Work
Performance

estimation
method

Performance
estimation mode
and constraints

Input Quantities Performance
metricVariable Parameter

[3]

Analytical Worst Case
Average Costs

#Joins,#Disjoins,Tree degree,
Group size

#Encryptions
Simulation

Worst Case
Average Costs

#Joins,
#Disjoins,

0-1000
0-4000

Tree degree
2,4,8,16,32
Group size
1024,4096

[8] Measurement

Group grows
from 5000 to

20000 with 1%
probability for
join and 0.1%

for disjoin

Time
0-600 Sec
0-8000 Sec

#Messages per
Minute,

Tree levels

[7] Analytical Full balanced
binary trees

Group size,
Parameters for encryption,
key generation and hashing

costs

Abstract cost per
join/disjoin, per

multiple
joins/disjoins

[1]

Analytical Full balanced
trees

Tree height and degree #Encryptions per
request

Measurement
Join rate =

Disjoin rate = 50%
Group size

0-8192
Tree degree

2-16
Request processing

time

[9] Simulation

Join rate =
Disjoin rate = 50%

n0=10000
Worst Case

Average Costs

Operation number
0-10000

Rekeying message
cost per 2000

operations

[5] Simulation
Statistically

generated join/
disjoin patterns

Time
0-70 Min.

0-700 Min.

Batch period
0-40 Min.
0-50 Min.

Tree height

[2]

Analytical Worst case
best case analysis

Group size, tree degree,
highest layer

#Keys per request
Simulation Full balanced

trees
Group size

0-8192
#Cumulative

layers

[4]

Analytical
Group size,#merging

members,
#leaving members

#Exponentiations
#Signatures

#Verifications

Measurement

Average
communication
and client delay

included

Group size
0-50

RSA module
512 bit, 1024

Bit

Time per
join/disjoin
Time per

merging/partition

[6]

Analytical 1 join / 1 disjoin

Group size
All potential members

Potential members not in the
group currently

#Encrypted
messages

Simulation
Dedicated for
some MBone

sessions

Time
0-400 hours

Group sizes
4096, 64K

Batch period
20-240 Min.

[10] Measurement Payload size in bytes Time

Table 1: Dissimilarity in rekeying performance estimation in related work
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2. Amount of security against a removed member.

3. Scalability in terms of supportable group sizes.

4. Group dynamics in terms of maximal supportable join and disjoin rates.

These characteristics allow for evaluating rekeying performance on a high

abstraction level, see Figure 2. To enable a reliable performance evaluation

of rekeying algorithms, metrics should be used, which are independent of

these algorithms. Therefore, the performance evaluation is settled on the

Benchmark Layer, which is sperated from Rekeying Layer in Figure 2. The

introduction of the Cryptography Layer and the Platform Layer is justified

as follows. The Rekeying Layer performs join and disjoin requests based on

cryptographic operations such as encryption and digital signing. For each

cryptographic primitive a vast selection is available. Taking symmetric-key

encryption as an example, rekeying may employ 3DES, AES, IDEA or other

algorithms. The same rekeying algorithm behaves differently according to

the utilized cryptographic primitives. Further more, the same cryptographic

primitive features different performance according to the platform it runs

on. This fact remains, even if public-domain libraries such as CryptoLib

[17] are utilized to realize cryptographic functions. Consequently, a reliable

rekeying benchmark does not only rely on an abstraction from the details of

the analyzed rekeying algorithms. Rekeying itself must be decoupled from

the underlying cryptographic primitives and from the executing platform.

The abstraction model of Figure 2 introduces essential design aspects for

the benchmark:

1. The separation of rekeying algorithms from the cryptographic layer

and from the execution platform leads to a substantial acceleration of
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2. Amount of security against a removed member. 

3. Scalability in terms of supportable group sizes. 

4. Group dynamics in terms of maximal supportable join and disjoin rates. 

 
Fig. 2. Rekeying benchmark abstraction model 

 

A representation of rekeying performance using these items allows a more understandable and 

reliable means to evaluate different rekeying algorithms. The advantage of this presentation 

stems from the abstraction associated with it. This can be illustrated as follows. To enable a 

reliable evaluation of rekeying algorithms, metrics must be introduced, which are independent of 

these algorithms. Thus, an abstraction of the performance estimation from rekeying algorithms is 

required. Fig. 2 represents the task of evaluating rekeying algorithms as a four-layer abstraction 

model. The highest layer, denoted as the Benchmark Layer, takes the responsibility for 

performance evaluation of rekeying algorithms which are executed on the following Rekeying 

Layer. The introduction of the two lower layers, the Cryptography and the Platform Layers, 

originates from the following analysis. The Rekeying Layer performs join and disjoin requests 

based on cryptographic operations such as encryption and digital signing. For each cryptographic 

primitive a vast selection is available. Taking symmetric-key encryption as an example, rekeying 

may employ DES, 3DES, AES, IDEA or other algorithms. The same rekeying algorithm behaves 

differently according to the utilized cryptographic primitives. Further more, the same 

Figure 2: Rekeying benchmark abstraction model

the evaluation process. This gain is based on the fact that rekeying

algorithms to be evaluated do not need to execute cryptographic algo-

rithms anymore. Instead, they just provide information on the required

numbers of these operations. The actual rekeying costs are then de-

termined by the benchmark with the aid of timing parameters relating

to the used primitives and the execution platform. This point will be

detailed in the next section.

2. From the last point it is obvious that the demand for a reliable rekey-

ing benchmark can not be fulfilled by real-time measurements on proto-

types or final products, since these measurements can not be performed

independently of the cryptographic primitives and the platform. In-

stead, for rekeying algorithms to be evaluated fairly and efficiently,

some kind of simulation has to be employed.

3.2. Benchmark Data Flow

A good understanding of the benchmark abstraction model can be achieved

by investigating the data exchange between its different layers as depicted in
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Fig. 3. Abstraction model for rekeying evaluation 

4. Rekeying Benchmark as a simulation Environment 

A. Cost Metrics and Group Parameters  

Definition 1: A Required Join Time TJ 
sys is a system parameter defined as the maximal 

allowable rekeying time needed to join a member.  

Definition 2: An Actual Join Time TJ specifies a join request and is defined as the sum of the 

waiting time WJ of the join request in the system queue and the rekeying time RTJ consumed by a 

rekeying algorithm to grant this request: 

JJJ RTWT      (1) 

Definition 3: Rekeying Quality of Service (RQoS) specifies a join request and is defined as the 

difference between the required join time of the system and the actual join time of this request:  

J
sys

J TTRQoS        (2) 

Definition 4: A Required Disjoin Time TD sys is a system parameter defined as the maximal 

allowable rekeying time needed to disjoin a member.  

Definition 5: An Actual Disjoin Time TD specifies a disjoin request and is defined similarly to 

TJ as follows: 

DDD RTWT    (3) 

Figure 3: Data exchange in the rekeying benchmark

Figure 3:

1. The rekeying layer receives rekeying requests and executes pseudo rekey-

ing, which means that rekeying algorithms only decide on the crypto-

graphic operations needed for these requests without executing them.

This issue is illustrated by the gap between the rekeying and the cryp-

tography layers.

2. The rekeying requests are delivered without any timing information.

This means that the rekeying layer is not informed about the tempo-

ral distribution of the rekeying requests. This task is assigned to the

benchmark layer.

3. The rekeying cost data provide information on the number of the

needed cryptographic operations for each rekeying request or request

batch.
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4. The timing parameters hide the cryptographic primitives and the exe-

cuting platform to provide a unified cost estimation, which can be used

by the benchmark layer for all rekeying algorithms in the same way.

5. To determine the time needed for executing a rekeying request, the

benchmark sums up the products of the rekeying cost data and the

corresponding timing parameters.
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4. Rekeying Benchmark as a Simulation Environment

4.1. Cost Metrics and Group Parameters

Definition 1. Join Rekeying Time JRT

Join rekeying time is defined as the time elapsed between the arrival of a

join request at the rekeying server and determining the group key by the new

member. JRT can be determined as:

JRT = tjw + tjcomp,server + tjcomm + tjcomp,member (1)

where, tjw refers to the waiting time of the join request in the system

queue, tjcom,server to the time elapsed by the rekeying algorithm to compute

the rekeying message on the server, tjcomm to the communication time required

to deliver the rekeying message to the member, and tjcomp,member to the time

elapsed by the member to compute the group key from the rekeying message.

Note that the time needed to propagate the rekeying request from a mem-

ber to the rekeying server is not considered. This is because the delivery time

of a rekeying request can be assumed as constant and thus has the same effect

whatever rekeying algorithm is used.

Definition 2. Disjoin Rekeying Time DRT

Disjoin rekeying time is defined as the time elapsed between the arrival of

a disjoin request at the rekeying server and determining the new group key

by remaining group members. DRT can be determined as:

DRT = tdw + tdcomp,server + tdcomm + tdcomp,member (2)
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While tdw, tdcom,server and tdcomm are the counterparts of the join case,

tdcomp,member is slightly different. Disjoin rekeying is completed when all re-

maining members get the new group key, so that data can be encrypted with

this key and the access of the leaving member is denied. Therefore, we take

tdcomp,member as the time needed to compute the group key by the worst-case

remaining member. A Worst-case remaining member is the member located

at the deepest leaf in the rekeying tree.

Definition 3. Rekeying Performance Metrics

A rekeying performance metric is a collective term which refers to both JRT

and DRT .

Definition 4. Group Parameters

A group parameter is a collective term which refers to one of the following

parameters:

1. Group size n : The number of group members.

2. Join rate λ : The arrival rate of join requests at the rekeying server.

3. Disjoin rate µ : The arrival rate of disjoin requests at the rekeying

server.

4.2. Simulation Modes

The performance of rekeying algorithms in terms of join and disjoin rekey-

ing times, JRT and DRT , differs depending on the group parameters n, λ,

and µ. An algorithm with fast rekeying at high join rates, for instance, could

work slower at high disjoin rates. Therefore, a detailed and fair evaluation of

rekeying algorithms should be based on an appropriate selection of the group
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parameters and their value ranges. For this purpose, the rekeying benchmark

supports the following four simulation modes. See Table 2, which summarizes

the main features of these simulation modes.

Transient Simulation. This simulation mode enables the evaluation of several

rekeying algorithms for same group parameters. The performance metrics

JRT and DRT are determined as a function of time in this case, i.e. JRT (t)

and DRT (t). By this means, the behavior of rekeying algorithms over long

time periods can be observed. To perform a transient simulation, an initial

group size n0, a join rate λ, a disjoin rate µ, and the desired simulation time

tsim are set by the user, see Table 2. Depending on λ and µ, the built-in

request generator generates a list of requests over the simulation time tsim.

Each request is then sent to the rekeying algorithm to determine the rekeying

message. Upon execution, the corresponding metric JRT (t) or DRT (t) is

determined. This is repeated for all algorithms to be evaluated. The transient

simulation is the foundation for all other simulation modes.

Scalability Simulation. The importance of this simulation mode results from

the significance of the scalability problem in group rekeying. The scalability

simulation investigates the effect of the group size on the performance of

a rekeying algorithm. The user defines a group size range [nstart, nend], a

simulation step ∆n, and an observation interval To. For each value n of the

range [nstart, nend], a transient simulation is performed with n0 = n and tsim =

To. The transient simulation thus results in a set of performance metrics

JRT (t) and DRT (t) for each n. From all these metrics the worst-case values

are considered, i.e., JRT (n) = JRT (t)max and DRT (n) = DRT (t)max.
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Join Dynamics Simulation. High join rates result in shorter inter-arrival

times of join requests and higher computation overhead on the server. This

causes longer waiting times for both join and disjoin requests, see (1) and

(11). Thus, higher join rates affect not only JRT , but also DRT . The join

dynamics simulation represents a way to investigate theses dependencies.

The user defines an initial group size n0, a disjoin rate µ, a fixed observa-

tion interval To, and join rate range [λstart, λend]. For each value λ of this

range, a transient simulation over To is started. As in the scalability sim-

ulation, for each λ several values for the performance metrics result, from

which the worst-case values are selected, i.e., JRT (λ) = JRT (t)max and

DRT (λ) = DRT (t)max.

Disjoin Dynamics Simulation. The disjoin dynamics simulation is similar to

the join dynamics simulation and can be exploited to investigate the behavior

of rekeying algorithms under different conditions for the disjoin rate µ.

Transient Scalability Join
Dynamics

Disjoin
Dynamics

Group
parameters n0, λ, µ λ, µ n0, µ n0, λ

Simulation
parameters tsim

T0, ∆n,
[ nstart, nend ]

T0, ∆λ,
[ λstart, λend ]

T0, ∆µ,
[ µstart, µend ]

Variable time n λ µ

Performance
metric

JRT (t)
DRT (t)

JRT (n)
DRT (n)

JRT (λ)
DRT (µ)

JRT (µ)
DRT (λ)

Table 2: Simulation modes
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Figure 4: Benchmark architecture

5. Rekeying Benchmark Design

The rekeying benchmark is mainly composed of two interfaces and three

components, as depicted in Figure 4. The user interface (UI) enables users

to evaluate different rekeying algorithms by selecting these algorithms and

setting the desired parameters. For designers a programming interface (PI)

is provided to integrate new algorithms. In addition, groups with special dy-

namic behavior, which does not follow Poisson distribution, can be supported

by means of a special programming interface module.

The component request generator creates a rekeying request list depend-

ing on the selected group and simulation parameters. An entry of this list

keeps information on the request type, join or disjoin, the identity of the

member to be joined or removed, and the arrival time of this request. The

algorithm manager then selects and configures the rekeying algorithms ac-

cording to the user settings. It coordinates all the functions of the simula-
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tor and controls the rekeying algorithms. Based on the rekeying cost data

delivered from the rekeying algorithms and the entered timing and mes-

sage parameters, the performance evaluator finally determines the rekeying

performance metrics JRT and DRT for each algorithm and prepares them

graphical presentation.

5.1. Request Generator

The request generator produces a rekeying request list RRL(T ) by exe-

cuting a main process (Section 5.1.1) and 3 subprocesses (Sections 5.1.2 and

5.1.3). Before describing these processes, we introduce some new concepts.

Definition 5. Rekeying Request

A rekeying request is a 3-tuple (type, ID, ta). type indicates the request

type, which may be either join (J) or disjoin (D). ID represents the member

identity to be joined (IDJ) or removed (IDD). ta describes the arrival time

of a join (disjoin) request taJ (taD), measured from the simulation start point.

Definition 6. Rekeying Request List RRL(T )

A rekeying request list over T , RRL(T ), is an ordered set of rekeying re-

quests, which arrive during a defined time interval T . The requests in the

list are ordered according to their arrival times.

Example 1. An RRL(T ) can be represented in tabular form. Table 3 de-

picts an example.

Definition 7. Join Arrival List AJ(T )

A join arrival list over a time interval T is an ordered list of inter-arrival times

relating to all join requests generated during T : AJ(T ) = (∆tJ(1),∆tJ(2), . . . ,

17



Request Type Member
Identity

Arrival Time
(ms)

J 1099 0
D 50 0.1
D 178 2
J 22657 5.3

Table 3: Example for a rekeying request list RRL(T )

∆tJ(h)), where ∆tJ(i) indicates the inter-arrival time of the i-th join request

in the interval T , and
i=h∑
i=0

∆tJ(i) 6 T. (3)

Definition 8. Disjoin Arrival List AD(T )

Similarly to AJ(T ), a disjoin arrival list over a time interval T is defined as:

AD(T ) = (∆tD(1),∆tD(2), . . . ,∆tD(k)), where

i=k∑
i=0

∆tD(i) 6 T. (4)

Definition 9. Member Identity ID

A member identity is a natural number between 0 and nmax − 1, where

nmax refers to the maximum group size. This parameter is set during simu-

lation setup. nmax is needed by some rekeying algorithms for setting up an

appropriate tree data structure.

Definition 10. Complete Multicast Group M

A complete multicast group is the set of all the member identities: M =

ID(i), where i ∈ 0 . . . (nmax − 1).

Definition 11. Joined Multicast Subgroup MJ

A joined multicast subgroup is the subset of all the given identities. At
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the start of a simulation with an initial group size n0, MJ can be given as:

MJ = ID(i), where i ∈ 0 . . . (n0 − 1).

Definition 12. Potential Multicast Subgroup MD

A potential multicast subgroup is the subset of all the identities, which can

be given to new members. At the start of a simulation with an initial group

size n0, MD can be given as: MD = ID(i), where i ∈ n0 . . . (nmax − 1).

5.1.1. Request Generator Process (GenReqList)

This process generates the rekeying request list RRL(T ) as given in Al-

gorithm 1. First, the arrival process GetArrivalLists(T) is called to produce

join and disjoin arrival lists AJ(T ) and AD(T ). According to the inter-arrival

times in these lists, the arrival times for the individual requests are deter-

mined. Depending on the request type, the member identity is then obtained

by calling GetJoinID or GetDisjoinID. Then, the RRL(T ) is updated by the

new request. After processing all entries in AJ(T ) and AD(T ), the RRL(T )

is sorted with increasing arrival time. Note that the request generator is

transparent to the simulation mode. Utilizing the generator for different

simulation modes will be described in the scope of the Algorithm Manager.

Example 2 illustrates Algorithm 1 in more details.

Example 2. Assume a group of maximal 8 members, where 5 members are

currently joined as follows: M = {0, 1, 2, 3, 4, 5, 6, 7}, MJ = {0, 1, 2, 3, 4},

MD = {5, 6, 7}, See definitions 10, 11, and 12 for M , MJ and MD, respec-

tively. Assume that calling the process GetArrivalLists(T) on some interval T

results in the inter-arrival time lists AJ(T ) = (10, 25) and, AD(T ) = (11, 5, 7).
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Algorithm 1 GenReqList

Require: T

Ensure: RRL(T )

1: GetArrivalLists(T)→ AJ(T ) and AD(T ), see Section 5.1.2.

2: i := 1, j := 1, taJ := 0, taD := 0

3: while i 6 h or j 6 k do

4: if ∆tJ(i) > ∆tD(j) then

5: taD := taD + ∆tD(j)

6: GetDisjoinID → IDD, see Section 5.1.3.

7: Add (D, IDD, taD) into RRL(T )

8: j := j + 1

9: else

10: taJ := taJ + ∆tJ(i)

11: GetJoinID → IDJ , see Section 5.1.3.

12: Add (J , IDJ , taJ) into RRL(T )

13: i := i+ 1

14: end if

15: end while

16: Sort RRL(T ) according to increasing arrival times.

17: return RRL(T )
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This means that during the given interval 2 join requests and 3 disjoin re-

quests are collected, i.e. h = 2, k = 3. In addition, the requests feature

the following inter-arrival times: ∆tJ(1) = 10, ∆tJ(2) = 25, ∆tD(1) = 11,

∆tD(2) = 5, and ∆tD(3) = 7.

In the first run of the while loop, the if-condition in Algorithm 1 is false

because ∆tJ(1) < ∆tD(1). Therefore, the first join request is processed by

determining its arrival time as taJ := 0 + 10 = 10, as taJ = 0 initially.

Assuming that executing the process GetJoinID returned a member identity

IDJ = 5, a first entry is written into the rekeying request list RRL(T ), as

depicted in the first row of Table 4 which represents the RRL(T ) for this

example. In the second iteration the if-condition is true because ∆tJ(2) >

∆tD(1). Therefore, the next request to be written to the RRL(T ) is of a

disjoin type and has an arrival time taD := 0 + 11 = 11, as taD = 0 initially.

Assuming that GetDisjoinID returns an IDD which is equal to 3, the RRL(T )

is extended by the second entry of Table 4. The other entries of Table 4 can

be determined in the same way. Figure 5 illustrates the relation between

the inter-arrival times generated by the process GetArrivalList(T) and the

estimated arrival times in the given example.

Request
Type

Member
Identity

Arrival Time
(ms)

J 5 10
D 3 11
D 1 16
D 4 23
J 1 35

Table 4: RRL(T ) of Example 2
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5.1.2. Arrival Process (GetArrivalLists)

Based on related work on modeling multicast member dynamics [15], the

rekeying simulator assumes inter-arrival times, which follow an exponential

distribution for join and disjoin requests with the rates λ and µ respectively.

The corresponding cumulative distribution functions are given by:

FJ(∆tJ) = 1− e−λ∆tJ FD(∆tD) = 1− e−µ∆tD (5)

To generate an exponentially distributed random variate based on uni-

form random numbers between 0 and 1, the inverse transformation technique

can be used. Accordingly, if r represents such a random number, the inter-

arrival times of a join and disjoin request can be estimated as:

∆tJ = −1

λ
ln r ∆tD = − 1

µ
ln r (6)

Algorithm 2 outlines the arrival process for creating the join arrival list

AJ(T ). Creating AD(T ) is identical and omitted, for brevity.

5.1.3. Join/Disjoin Identity Selection Processes (GetJoinID/GetDisjoinID)

To join a member, any identity IDJ may be selected from the potential

multicast subgroup MD. A possible selection strategy may rely on choos-
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If GetDisjoinID returns an IDD which is equal to 1, the request list is updated by the third row of 

Table 4. The other two entries can be estimated in the same way. 

TABLE 4. RRL(T) OF EXAMPLE 2 

 
Request  

Type 
Member 
Identity 

Arrival Time 
(ms) 

J 5 10 
D 3 11 
D 1 16 
D 4 23 
J 1 35 

 

Fig. 5 illustrates the relation between the inter-arrival times generated by the process 

GetArrivalList(T) and the estimated arrival times in the given example.  

Fig. 5. Arrival times and inter-arrival times for Example 2 

 

After the request generation in this example, the joined and the potential multicast subgroups are 

now given as follows:  MJ = {0, 1, 2, 5},  MD = {3, 4, 6, 7} 

The benchmark prototype optionally allows the user to skip the request generator and to enter a 

rekeying request list freely. This provides a means to construct RRL(T) independently of the 

distribution function of rekeying requests. By this means, typical errors, which result from 

choosing some distribution function based on network traffic analysis, can be avoided.   

2) Arrival Prrocess GetArrivalLists 
 
According to related work on modeling multicast member dynamics [15], the rekeying 

simulator assumes, as default, inter-arrival times, which follow an exponential distribution for 

∆tJ(1)=10 ∆tJ(2)=25 

∆tD(1)=11 ∆tD(2)=5 ∆tD(3)=7 

taJ(1)=10 taJ(2)=35 taD(1)=11 taD(2)=16 taD(3)=23 

time 

Figure 5: Arrival times and inter-arrival times for Example 2
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Algorithm 2 GetArrivalLists

Require: T

Ensure: AJ(T ) (Generating AD(T ) is identical)

1:
∑

∆tJ := 0;
∑

∆tD := 0;

2: while
∑

∆tJ 6 T do

3: Generate r

4: Determine ∆tJ = 0 according to (8)

5:
∑

∆tJ =
∑

∆tJ + ∆tJ

6: Add ∆tJ to AJ(T )

7: end while

8: return AJ(T )

ing the smallest available IDJ , which allows some order in the group man-

agement. In contrast, selecting a leaving IDD from MJ is inherently non-

deterministic, as a group owner can not forecast which member will leave the

group. To select an IDD the following method is proposed. The IDD’s of MJ

are associated with continuous successive indices from 0 to m− 1, where m

is the number of all IDD’s in MJ . To select an IDD, first a uniform zero-one

random number r is generated. Then an index i is determined as m · r. In a

last step, the IDD is selected, which has the index i.

5.2. Algorithm Manager

The algorithm manager plays a central role in the benchmark architec-

ture. Its functionality can be illustrated by the process described in Figure

6. After reading the user settings of the desired parameters, the simulation

mode, and the algorithms to be evaluated, the algorithm manager executes
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to the data flow as depicted Fig. lgorithm 1 Benchmark evaluation process 

 
 

A. Request Generator  
 

The Request Generator produces a rekeying request list RRL(T) by executing the Request 

Generator Process based on three subprocesses: the Arrival Process to generate join/disjoin 

arrival lists AJ(T)/AD(T) and the Join/Disjoin Identity Selection Processes to generate member 

identities. For a formal description a terminology specific to the generator is presented first.  

Definition 9: A Rekeying Request is a 3-tuple (type, ID, ta). type indicates the request type, 

which may either be join (J) or disjoin (D). ID represents the member identity to be joined (IDJ) 

or removed (IDD). ta describes the arrival time of a join/disjoin request taJ / taD, measured from 

the start point of the simulation run.  

Definition 10: A Rekeying Request List over T, RRL(T), is an ordered set of rekeying 

requests, which arrive during a defined time interval T. The requests in the list are ordered 

according to their arrival times.  

Example 1: RRL(T)  

An RRL(T) can be represented in tabular form, Table 3 depicts an example. 
 

Simulation 
Mode? 

Enable Simulation Setup 

Enter User Settings 

DoDisjoinDynSim 

Evaluate Simulation Results 

Output Evaluation Results 

DoJoinDynSim DoScalSim DoTranSim 

Figure 6: Rekeying performance evaluation procedure

the corresponding simulation process. Simulation processes on their part call

the request generator and pass the rekeying requests to the selected rekeying

algorithms. As a result, a simulation process provides abstract rekeying costs,

see Definition 13. The abstract rekeying costs are then forwarded to the per-

formance evaluator which determines the rekeying performance metrics JRT

and DRT . In this section the underlying simulation processes DoTranSim,

DoScalSim, DoJoinDynSim, and DoDisjoinDynSim are explained. For this

purpose, some new concepts are introduced first.

Definition 13. Abstract Rekeying Cost (ARC)

Abstract rekeying cost is a 9-tuple (Ns(G), Ns(E), Ns(H), Ns(M), Ns(S),

Nm(D), Nm(H), Nm(M), Nm(S)), which specifies a rekeying request and gives

the number of cryptographic operations executed by the server to grant this

request as well as the the number of cryptographic operations executed by
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the member to determine the new group key from the rekeying message.

Table 5 specifies the elements of the ARC.

ARC Element Meaning
Ns(G) # Cryptographic keys generated on server
Ns(E) # Symmetric encryptions executed on server
Ns(H) # Cryptographic hash operations executed on server
Ns(M) # Message authentication codes (MAC’s) determined on server
Ns(S) # Digital signatures determined on server

Nm(D) # Symmetric decryptions executed by member
Nm(H) # Cryptographic hash operations executed by member
Nm(M) # MAC’s verified by member
Nm(S) # Digital signatures verified by member

Table 5: Abstract rekeying costs notation

Definition 14. Rekeying Cost List RCL(T)

A rekeying cost list is a rekeying request list RRL(T ), see Definition 6, which

is extended by the abstract rekeying cost ARC for each request. RCL(T ) is

used for transient simulation.

Example 3. Table 6 shows an example for an RCL(T ), which is an exten-

sion of the rekeying request list given in Table 3. This example results from

executing the LKH algorithm with binary trees. This can be seen from the

fact that each generated key is encrypted twice to determine the rekeying

submessages. Note that the rekeying algorithm in this example does not

use group authentication. Therefore, no message authentication codes are

needed. Instead, rekeying submessages are hashed and the final hash value

is signed once for each request [18].

Definition 15. Complex Rekeying Cost List CRCL(T)

A complex rekeying cost list over an interval T is a set of rekeying cost lists
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Request
Type

Member
Identity

Arrival
Time (ms)

Rekeying Cost List
RCL(T)

Ns(G) Ns(E) Ns(H) Ns(M) Ns(S) Nc(D) Nc(H) Nc(M) Nc(S)
L 1099 0 6 12 12 0 1 12 12 0 1
J 50 0.1 3 6 6 0 1 6 6 0 1
J 178 2 8 16 16 0 1 16 16 0 1
L 22657 5.3 2 4 4 0 1 4 4 0 1

Table 6: RCL(T) for Example 3

generated over this interval under different group conditions: CRCL(T ) =

{RCL1(T ), RCL2(T ), · · ·}.

CRCL(T ) is used in the simulation modes scalability, join dynamics, and

disjoin dynamics, where an RCL(T ) is generated for each n, λ, or µ in the

desired simulation range, respectively.

Transient Simulation. Algorithm 3 represents the process of transient sim-

ulation DoTranSim. The request generator process is resumed to generate

a request list RRL(tsim) for the desired simulation time period. For each

selected rekeying algorithm, the algorithm manger performs two main steps.

First, the rekeying algorithm is requested to construct an initial group with

n0 members. Then, each request of RRL(tsim) is sent to the rekeying algo-

rithm, which determines the corresponding abstract rekeying cost ARC for

that request.

Other Simulation Modes. As mentioned in Section 4.2, other simulation

modes are highly similar and rely all on the transient simulation mode.

Therefore, only the scalability simulation is given in Algorithm 4, for brevity.

5.3. Performance Evaluator

This component receives a set of RCL(T ) or CRCL(T ) and calculates

the rekeying performance metrics JRT and DRT as a function of time, group
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Algorithm 3 DoTranSim

Require: All settings for a transient simulation as given in Table 2; set of

rekeying algorithms to be evaluated.

Ensure: A RCL(tsim) for each rekeying algorithm

1: GenReqList(tsim) according to Algorithm 1 → RRL(tsim)

2: for each algorithm do

3: Initialize the group with n0 members

4: while RRL(tsim) is not empty do

5: Send a rekeying request to the algorithm

6: Get corresponding ARC

7: Add ARC to RCL(tsim)

8: end while

9: end for

10: return RCL(tsim) for all algorithms
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Algorithm 4 DoScalSim

Require: All settings for a scalability simulation as given in Table 2; set of

rekeying algorithms to be evaluated.

Ensure: A CRCL(To) for each rekeying algorithm

1: for each algorithm do

2: n := nstart

3: while n 6 nend do

4: DoTranSim for To and n0 = n according to Algorithm 3→ RCL(To)

5: Add RCL(To) to CRCL(To)

6: n := n+ ∆n

7: end while

8: end for

9: return CRCL(To) for all algorithms
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size, join rate, or disjoin rate.

Definition 16. Performance Simulation Point (PSP)

A performance simulation point is a 3-tuple (x, JRT , DRT ), where x can

be time, n, λ, or µ depending on the simulation mode, see Table 2. Note

that in a transient simulation JRT is not defined for a disjoin request. The

same applies to DRT regarding a join request.

Definition 17. Rekeying Performance List (RPL)

A rekeying performance list is a set of performance simulation points. RPL =

{PSP} = {(x1, JRT1, DRT1), (x2, JRT2, DRT2), . . .}.

Definition 18. Timing Parameter List (TPL)

A timing parameter list (TPL) is a 9-tuple (Ts(G), Ts(E), Ts(H), Ts(M), Ts(S),

Tm(D), Tm(H), Tm(M), Tm(S)), where the tuple elements specify the compu-

tational overhead for cryptographic operations both by the server and by the

client, see Table 7.

Definition 19. Message Parameter List (MPL)

A message parameter list (MPL) is a 4-tuple (L(E), L(H), L(M), L(S)),

where the tuple elements specify the bit length of each segment in the rekey-

ing message, see Table 7.

The performance evaluator executes processes, which combine a rekeying

cost list RCL(T ) or a complex rekeying cost list CRCL(T ) with the tim-

ing and the message parameter lists TPL and MPL to produce a rekeying

performance list PRL for a specific rekeying algorithm.
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TPL/MPL
Element

Meaning

Ts(G) Time for generating one cryptograpic key on server
Ts(E) Time for performing one symmetric encryption on server
Ts(H) Time for performing one hash operation on server
Ts(M) Time for detemining MAC on server
Ts(S) Time for detemining a digital signature on server

Tm(D) Time for performing one symmetric decryption by member
Tm(H) Time for performing one hash operation by member
Tm(M) Time for detemining MAC by member
Tm(S) Time for verifying a digital signature by member

L(E) Length of an encrypted key
L(H) Lngth of a hash value
L(M) Length of a MAC
L(S) Length of a digital signature

Table 7: Timing and message parameters

For each rekeying request in RCL(T )/CRCL(T ) the join/disjoin rekeying

times JRT and DRT are determined according to equations (1) and (11).

Due to similarity, we only detail JRT in the following.

waiting time t
j/d
w . The waiting time for a join request is determined as:

tj/dw =


∑m

i=1 t
j/d
comp,server(i) if m > 1

0 if m = 0
(7)

where m represents the number of all requests waiting in the system queue

or being processed at the arrival of the request at hand.

Server computing time t
j/d
com,server.

tj/dcomp,server = Ns(G)·Ts(G)+Ns(E)·Ts(E)+Ns(H)·Ts(H)+Ns(M)·Ts(M)+Ns(S)·Ts(S)

(8)

Client computing time t
j/d
com,server.

t
j/d
comp,member = Nm(D)·Tm(D)+Nm(H)·Tm(H)+Nm(M)·Tm(M)+Nm(S)·Tm(S)

(9)
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Rekeying message delivery time t
j/d
comm.

tj/dcomm = (N(E) ·L(E)+N(H) ·L(H)+N(M) ·L(M)+N(S) ·L(S))×B (10)

where B refers to the network bandwidth which can be entered as a

simulation parameter to model the network traffic.

Transient Evaluation Process (EvalTranSimResults). In the case of a tran-

sient simulation the performance evaluator executes the process EvalTran-

SimResults according to Algorithm 5. For each join and disjoin request in the

JRT (t), a performance simulation point PSP is determined. The symbol

∞ in the pseudo code indicates an undefined metric for the current request.

For example, JRT is not defined for a disjoin request. taJ and taD represent

the arrival times of the corresponding join and disjoin requests, respectively.

Remember that these time values are determined from the arrival lists by

the request generator process according to Algorithm 1.

Complex Evaluation Process (EvalComplexSimResults). Other simulation modes

deliver a CRCL(T ). The performance evaluator generates one performance

simulation point PSP for each RCL(T ) of CRCL(T ). The first element of

the PSP tuple represents a n, λ, or µ value for scalability, join dynamics or

disjoin dynamics simulation, respectively. The second element represents the

maximum join rekeying time JRTmax of all join requests in the observation

time for the corresponding n, λ, or µ value. Similarly, the third element

represents DRTmax of all disjoin requests. Algorithm 6 depicts the process

EvalComplexSimResults for evaluating non-transient simulation results.
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Algorithm 5 EvalTranSimResults

Require: A RCL(tsim) for each rekeying algorithm

Ensure: A PRL for each rekeying algorithm

1: for each RCL(tsim) do

2: for each request in RCL(tsim) do

3: if request type = J then

4: Determine JRT according to equations (1), (7),(8), (9), and (10)

5: PSP=(taJ , JRT , ∞)

6: else

7: Determine DRT according to equations (11), (7),(8), (9), and (10)

8: PSP=(taD, ∞, DRT )

9: end if

10: Add PSP to PRL

11: end for

12: end for

13: return PRL for all algorithms
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Algorithm 6 EvalComplexSimResults

Require: A CRCL(To) for each rekeying algorithm

Ensure: A PRL for each rekeying algorithm

1: for each rekeying algorithm do

2: for each RCL(To) of CRCL(To) do

3: JRTmax = 0, DRTmax = 0

4: for each request in RCL(To) do

5: if request type = J then

6: Determine JRT according to equations (1), (7),(8), (9), and

(10)

7: if JRT > JRTmax then

8: JRTmax := JRT

9: end if

10: else

11: Determine DRT according to equations (11), (7),(8), (9), and

(10)

12: if DRT > DRTmax then

13: DRTmax := DRT

14: end if

15: end if

16: PSP=(n/λ/µ, JRTmax, DRTmax)

17: end for

18: Add PSP to PRL

19: end for

20: end for

21: return PRL for all algorithms
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6. Implementation

The rekeying benchmark was implemented in Java using the Eclipse En-

vironment [19]. The software architecture consists of two main components:

the graphical user interface (GUI) and the actual simulation kernel, as de-

picted in Figure 7. In this figure the benchmark software is illustrated as a

simplified class diagram according to the Unified Modeling Language (UML)

[20]. Note assigning the different classes to two packages denoted as gui and

kernel. BenchmarkAndAlgorithmManager represents the central class in the

package kernel and includes the main function. This class is associated with

the class SimulationSettings, which receives its attribute values from the GUI

class SimulationSetup.

The execution of the benchmark causes the opening of a framework,

where several simulations can be executed. This point is indicated by the

association relation between the classes SimulationSetup and MainFrame.

Simulation is an abstract class, which is inherited by two different simula-

tion classes: TransientSimulation and ComplexSimulation. Note that the

class ComplexSimulation is also abstract and builds the base class for the

other three simulation classes ScalabilitySimulation, JoinDynSimulation, and

DisjoinDynSimulation. The association relation between the classes Tran-

sientSimulation and ComplexSimulation reflects the fact that each complex

simulation is based on a frequented execution of the transient simulation. Af-

ter program start, the simulation setup window displays default parameters.

Changing these values is stored for a next simulation in the same session.

See Figure 8 for an overview of the simulation setup window. The set of

all parameters belonging to one simulation are managed as a parameter list
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software architecture consists of two main components: the graphical user interface (GUI) and 

the actual simulation kernel, as depicted in Fig. 6. In this figure the benchmark software is 

illustrated as a simplified class diagram according to the Unified Modelling Language (UML) 

[20]. Note the assigning of the different classes to two packages denoted as gui and kernel. 

BenchmarkAndAlgorithmManager represents the central class in the package kernel and includes 

the main function. This class is associated with the class SimulationSettings, which receives its 

attribute values from the GUI class SimulationSetup. 

 
Fig. 66. Rekeying benchmark class diagram 

gui 

kernel 

MainFrame 

+getLastSimulationSettings ( ): SimulationSettings 
+setLastSimulationSettings (settings: SimulationSettings) : void

SimulationResultsviewer 

+addSimulation (simulation: Simulation, show : boolean): void SimulationSetup 

1 

0 . . * 

BenchmarkAndAlgorithmManager 

+benchmarkMain ( ): void 

SimulationSettings 

DefaultSimulationSettings 

0 . . * 

1 

1 1 

ScalabilitySimulation 

ComplexSimulation 

#addTransientSimulationParameters(x: Double, T_o: Double 
                                                            lambda: Double,  
           mu: Double, n0: Integer, 
           algorithm: Algorithm): void  

JoinDynSimulation DisjoinDynSimulation 

Simulation 

#doSim(algorithm: Algorithm): void 
+getLastRQoSPoints ( ): List<RQoSimulationPoint>  
+getLastRACPoints ( ): List<RACSimulationPoint>      

TransientSimulation 

#doTranSim(t_sim: Double, lambda: Double,  
                   mu: Double, n0: Integer, 
                   algorithm: Algorithm)    

1 1.. * 

Algorithm 

Figure 7: Rekeying benchmark class diagram
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The execution of the benchmark causes the opening of a framework, where several simulations 

can be executed. This point is indicated by the association relation between the classes 

SimulationSetup and MainFrame. Simulation is an abstract class, which is inherited by two 

different simulation classes: TransientSimulation and ComplexSimulation. Note that the class 

ComplexSimulation is also abstract and builds the base class for the other three simulation 

classes ScalabilitySimulation, JoinDynSimulation, and DisjoinDynSimulation. The association 

relation between the classes TransientSimulation and ComplexSimulation reflects the fact that 

each complex simulation is based on a frequented execution of the transient simulation.  

After program start, the simulation setup window displays default parameters. Changing these 

values is stored for a next simulation in the same session. See Fig. 7 for an overview of the 

simulation setup window. The set of all parameters belonging to one simulation are managed as 

a parameter list using the library class LinkedHashMap. This class is not shown in Fig. 6 for 

simplicity. 

sim 

Figure 8: Pay-TV a potential scenario for secure multicast

using the library class LinkedHashMap. This class is not shown in Figure 7

for simplicity.

7. Case Studies

This section illustrates the advantage of the rekeying benchmark by means

of two case studies. Both examples relate to the logical key hierarchy. There-

fore, this scheme is introduced first.

The basic idea behind LKH is to divide the group into hierarchical sub-

groups and to provide the members of each subgroup with a help-key. Con-
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Fig. 7. Simulation Setup window 

 

7. Case Studies 

This section illustrates the advantage of the rekeying benchmark by means of two case studies. 

Both examples relate to the logical key hierarchy. Therefore, this scheme is introduced first. 

The basic idea behind the LKH is to divide the group into hierarchical subgroups and to 

provide the members of each subgroup with a shared key, which is called the help-key. Consider 

the example illustrated in Fig. 8 (left-tree) for an eight-member group. In this model members m0 

and m1 build a subgroup with the help-key k0-1, members m0, m1, m2, and m3 build a larger 

subgroup, whose help-key is k0-3. All members compose the largest subgroup with the help-key 

k0-7. This key represents the group key which is used to encrypt useful data. Consequently, a 

member now holds several keys, which are the identity key kd, which is known only to this 

member and to the server, the group key kg known to all group members, and some help-keys kx-y 

corresponding to the subgroups, which the member belongs to. Member m6, for example, has kd 

= k6,  kg = k0-7  and two help-keys, which are  k6-7 and k4-7. 

 

 
Fig. 8. LKH example 

 
Disjoin Rekeying 

Assume that the member m2 wants to leave the group. How many encryptions have to be 

computed by the server to rekey the group? 

k0 k1 k2 k3 k4 k5 

k0-1 k2-3 k4-5 

k0-3 k4-7 

k0-7 

k6 k7 

k6-7 

m0 m1 m2 m3 m4 m5 m6 m7 

k0 k1 k3 k4 k5 

k0-1 k4-5 

k0-3
new k4-7 

k6 k7 

k6-7 

m0 m1 m3 m4 m5 m6 m7 

k0-7
new 

Figure 9: LKH example

sider the example illustrated in Figure 9 (left tree) for an eight-member group.

In this model members m0 and m1, for instance, build a subgroup with the

help-key k0−1. All members compose the largest subgroup with the help-key

k0−7. This key represents the group key, which is used to encrypt payload

data. Consequently, a member holds several keys, which are the identity key

kd, which is known only to this member and to the server, the group key kg

known to all group members, and some help-keys kx−y corresponding to the

subgroups, which the member belongs to. Member m6, for example, holds

kd = k6, kg = k0−7, and two help-keys, namely k6−7 and k4−7.

To disjoin m2, for instance, two keys, knew0−3 and knew0−7 are generated, en-

crypted, and sent to the remaining members needing them. The right side

of Figure 9 represents the key tree after this processing. Using the notation

Eka(kb) to refer to a rekeying submessage (RSM) representing the encryp-

tion of the key kb with the key ka, the server has to generate the following

rekeying submessages in order to disjoin m2:

Ek3(k
new
0−3), Ek0−1(k

new
0−3), Eknew

0−3
(knew0−7), Ek4−7(k

new
0−7)

A similar analysis can be performed for the case of member joining. LKH
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enables efficient rekeying due to the logarithmic relation of rekeying cost to

the group size.
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7.1. Tree Rebalancing in LKH

LKH is based on the management of a key tree on the rekeying server. As

an effect of multiple disjoin processes, the key tree may get out of balance.

Several solutions have been proposed to rebalance the tree in this case. The

first contribution originates from Moyer [11] who introduced two methods

to rebalance the key tree, an immediate and a periodic rebalancing. Only

a cost analysis after one disjoin request is given for the first method. The

periodic rebalancing is not analyzed. Moharrum [12] presented a method for

rebalancing based on sub-trees. A comparison with the solution of Moyer is

drawn, but not with the original LKH. Rodeh [13] applied AVL-tree rebalanc-

ing methods to key trees. However, no backward access control is guaranteed

in this solution. Goshi [14] proposed three algorithms for tree rebalancing.

Simulation results are provided, which assume equally likely join and disjoin

behavior. However, this condition itself ensures tree balancing, because a

new member can be joined at the leaf of the most recently removed member.

The same applies to the simulation results by Lu [9]. From this description,

it is obvious that a comprehensive analysis is needed to justify the employ-

ment of rebalancing, which is associated with extra rekeying costs resulting

from shifting members between tree leaves. The rekeying benchmark offers

this possibility by allowing a simultaneous evaluation of two LKH algorithms

(with and without rebalancing) under complex conditions. Especially the ef-

fect of the disjoin rate is of interest in case of rebalancing.

Therefore, a disjoin dynamics simulation is performed and parameters



• 0.48 µs for AES-128 key generation

• 0.24 µs for encrypting a 128 Bit AES key

• 0.24 µs for computing a SHA-256 hash value of an 128 Bit AES key

• 0.24 µs for generating a HMAC-SHA1 message authentication code of

an 128 Bit AES key
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particularly emphasizing the effects of rebalancing have been chosen. As

members are joined and disjoined randomly during simulation, balancing

cannot be triggered directly. For this reason the following considerations

have been taken into account:

• High rate of leaving members for disturbing tree balance and promoting

rebalancing: µstart = 1s−1, µstop = 500s−1, ∆µ = 25s−1, To = 20s

• Low rate of joining members for not affecting rebalancing process caused

by leaving members: λ = 5s−1

• High quantity of initial members compared to maximum group size

leading to high rebalancing rate : n0 = 65535, nmax = 131072

For aquiring meaningful measurement data also the timing values according

to available implementations have been chosen. For the server side, values for

primitive crypto operations of a rekeying processor introduced in [18] have

been applied.

For determining the client side values of primitive crypto operations, the

Flexiprovider library [21] on a PC (Windows Vista 32 Bit SP2 running on

Pentium Core 2 Duo L7500@1.6 GHz, 2 GB RAM) has been used.



• 6.83 µs for decrypting an 128 Bit AES key

• 4.48 µs for for computing a SHA-256 hash value of an 128 Bit AES key

• 9.29 µs for verifying a HMAC-SHA1 message authentication code of an

128 Bit AES key

Simulation results are depicted in figure 10. Please remember the definition

of DRT:

DRT = tdw + tdcomp,server + tdcomm + tdcomp,member (11)

7.2. Comparison of LKH with OFT

Oneway-Function-Trees(OFT) introduced by Sherman [22] are also bi-

nary trees used for efficient rekeying. Additionally to LKH a blinding func-

tion g(x) and a mixing function f(x) are used. The blinding function g(x)

is a one-way function, meaning that it is computationally infeasable to com-

pute the value of x when g(x) is given. The mixing function f(x, y) merges

two values x and y and fulfills the property f : Nn × Nn → Nn. Usually the

blinding function is implemented by using a hash function and the mixing

function is implemented by using an XOR-function. Secret keys, which have

been assigned beforehand over a secure channel and which are associated

with the leaf nodes of the tree, represent the member keys. Applying the

blinding function g(x) on these member keys results in the blinded keys of

the members. Each of the inner nodes is also associated with a blinded key

and corresponding secret key, the key encryption key (KEK). The KEK of
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Figure 10: Leave dynamics simulation unbalanced vs. balanced LKH
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Figure 11: OFT example

an inner node is computed by applying the mixing function f(x, y) on the

blinded keys of its children. The blinding key of an inner node is computed

by applying the blinding function g(x) on its KEK. The OFT key distribu-

tion provides that each member knows his own member key and all blinded

keys of the siblings of the respective inner nodes on the path from the leaf

node to the root. Consider the example for an eight-member group illus-

trated in figure 11 again. When disjoining member m2 (right tree) the key

of its sibling m3, k3, is directly associated with the parent node k0−3. After

that k3 is rekeyed and the new KEK knew3 is sent by using the old KEK k3.

Subsequently by using the new blinded keys, a rekeying of all nodes in the

tree from member m3 to the root takes place, namely of k0−3 and k0−7. Fi-

nally the siblings of the nodes, whose blinded keys have been changed, are

provided with the new corresponding blinded keys; in our case the node of

k0−1 is provided with Ek0−1(g(knew3 )) and the node of k4−7 is provided with

Ek4−7(g(knew0−3)). In Figure 11 the renewal of a KEK is indicated by the label

in the respective node, the renewal of a blinded key is indicated by the red

background color of the respective node and the renewal of the information
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about the siblings’ blinded key is indicated by the green background color

of the respective node. Alltogether, the rekeying message for the disjoin

operation of m2 consists of the following rekeying submessages:

Ek3(k
new
3 ), Ek0−1(g(knew3 )), Ek4−7(g(knew0−3))

The primary advantage of OFT over LKH is that it sends only half as many

keys as LKH to the group and performs only half as many encryptions. This

advantage comes for the cost that additional blinding function computations

in the number of the tree height have to be performed for OFT. However, it

is clear that the advantage of OFT is unbeatable especially in cases where

line bandwidth is low and therefore communication costs are dominant. In

figure 12a JRTs of LKH and OFT resulting from a scalability simulation with

nstart = 4096, nend = 131.072 and a bandwidth of 16 Mbit/s are depicted.

The system, timing and message parameters are the same as in our tree

balancing example. For the blinding function the timing values of the afore-

mentioned SHA-256 hash function are used. It can be observed that even if

line bandwidth as high as 16 Mbit/s is assumed, communication time is the

dominant factor leading to better JRT performance of OFT. In cases where

line speed does not matter, it could be useful to know how the computational

cost ratio between the encryption function and the blinding function is in or-

der to decide whether to use LKH or OFT. For instance when a particular

environment of an embedded system is considered, in which the encryption

function is available as a high-performance hardware implemention and the

blinding-function is implemented in software. By using the rekeying bench-

mark it is possible to assess the performance of LKH and OFT in such an

environment under various group conditions. In order to determine the com-
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Figure 12: Scalability simulation LKH vs. OFT
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Figure 13: Equal performance of LKH and OFT depending on Ce and Co

putational cost ratio the timing parameters of a single encryption operation

Ce and a single blinding operation Co were adjusted in such way that LKH

and OFT performed equal in a scalability simulation under the conditions

decribed above. Please note that communication costs have been omitted.

The results are depicted in figure 13. Using these results, a dicision whether

to use LKH or OFT in a particular environment can easily be made. For

instance, in an environment, where Ce=20µs and Co=60µs the use of LKH

would be preferred (see figure 13). As a more general statement it can be

observed that from the view of server side computation costs the advantages

of OFT over LKH fade as costs for the encryption operation increase. This

is due to the fact that OFTs also utilize the encryption function.

8. Conclusion

An assessment methodology and an associated simulation tool were pre-

sented as a novel method to deal with the rekeying performance evaluation
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problem. By means of the underlying concept of abstraction a reliable and

meaningful evaluation of different rekeying algorithms is provided. Two case

studies illustrated the advantage of this benchmark in analyzing yet unan-

swered questions relating to rekeying. In its first prototype, the benchmark

considers rekeying costs in terms of cryptographic operations to be run on

the server side. Other cost factors, such as tree traversing in LKH, will be

addressed in future work. Additionally, more rekeying algorithms will be

programmed and evaluated.
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