
Abstract—Trusted computing is gaining an increasing accep-
tance in the industry and finding its way to cloud computing.
With this penetration, the question arises whether the concept
of hard-wired security modules will cope with the increasing
sophistication and security requirements of future IT systems
and the ever expanding threats and violations. So far, embed-
ding cryptographic hardware engines into the Trusted Platform
Module (TPM) has been regarded as a security feature. However,
new developments in cryptanalysis, side-channel analysis, and
the emergence of novel powerful computing systems, such as
quantum computers, can render this approach useless. Given
that, the question arises: Do we have to throw away all TPMs
and loose the data protected by them, if someday a cryptographic
engine on the TPM becomes insecure? To address this question,
we present a novel architecture called Sustainable Trusted Plat-
form Module (STPM), which guarantees a secure update of the
TPM cryptographic engines without compromising the system’s
trustworthiness. The STPM architecture has been implemented
as a proof-of-concept on top of a Xilinx Virtex-5 FPGA platform,
demonstrating a test case with an update of the fundamental hash
engine of the TPM.

Keywords-Field programmable gate array, Cryptography,
Trusted Platform Module, Secure Update, Trustworthiness

I. INTRODUCTION AND RELATED WORK

Trusted Computing is an emerging technology, developed
and promoted by the Trusted Computing Group (TCG), which
aims at building trustworthy computing platforms. The Trusted
Platform Module (TPM) forms the root-of-trust while execut-
ing critical security functions such as integrity measurement,
remote attestation, binding, and sealing. Today’s TPMs are
micro-controller based chips with hard-wired engines for var-
ious cryptographic schemes such as RSA, SHA-1, and HMAC
as specified in TPM component architecture by TCG [1].
Using hard-wired cryptographic engines, storing cryptographic
root keys on hardware, and tying itself to the motherboard, the
TPM provides hardware-based security to the system artifacts
such as data, certificates, passwords and other cryptographic
keys. For example, in a personal computer (PC) without TPM,
encrypted data and encryption keys are usually stored on the
same hard drive. In contrast, a TPM-based PC stores the
encryption keys on the TPM and prevents an unauthorized
access to the data. Although the TPM is predominantly used
in workstations and servers [2], some approaches already exist
to map the specification to embedded systems, reconfigurable
architectures, and mobile devices [3], [4], [5]. TCG also
publishes platform specific profiles used as a common yard
stick for evaluating devices that incorporate TCG technology.

However, it is well-known that cryptographic schemes,
also those embedded in TPMs, have always been subject to

persistent cryptanalysis and recently to side-channel analysis
either by malicious attackers or by the research community.
For instance, Wang et al. [6] showed the collision search
attacks for the SHA-1 algorithm and Finke et al. [7] conducted
a side-channel attack on the RSA key generator. Further, in
[8], Bruschi et al. have presented a replay attack during the
execution of the TPM authorization protocol that compromises
the correct behavior of the trusted platform. Also, Sadeghi
et al. have tested several TPM chips for compliance to TCG
specifications and were able to find weaknesses with those
chips as described in [9].

Considering these and other threats and violations, and
following the general recommendation regarding the necessity
of updating cryptographic algorithms, e.g., those published
by NIST [10], the idea of hard-wiring the TPM security
engines began to be questioned. This can be seen from the
specification of the next generation TPM (called TPM.next) by
TCG. In particular, this specification allows the replacement of
cryptographic algorithms in case of a compromise or even for
boosting the TPM performance [11]. In spite of this agreement
on their necessity, technical solutions for the update of TPM
cryptographic engines have not been proposed in the literature,
so far.

In this paper we present a novel generic architecture for
updating the cryptographic engines used by the TPM in case of
a compromise. For this an in-depth analysis of current TPMs,
their security functions, and threats is carried out first. Based
on this analysis a novel architecture for TPM, which we refer
to as the Sustainable Trusted Platform Module (STPM) as
depicted in Figure 1, is proposed. Relying on this architecture,
an update procedure is then defined. A comprehensive test
case for the SHA-1 engine update on STPM is presented and
evaluated next. To regain the trust in the system, fundamental
post-update measures are specified.

II. THREATS TO THE TPM AND THEIR IMPLICATIONS

This section discusses the threats to the TPM and their
implications using a threat matrix. Also, the security functions
provided by the TPM are described to group them with the
corresponding cryptographic engines of the TPM.

A. Threat Matrix

Table I gives an overview of the individual threats a TPM
has to deal with, the affected components, and the counter-
measures to the posed threats.

A Novel Architecture for a Secure Update of
Cryptographic Engines on Trusted Platform Module



2

Updatable Cryptographic Engines

Cryptographic Memory Units

I/O Block
Execution

Engine
(CPU)

RAM

ROM

Key
Generator

RSA
Engine

SHA-1
Engine

HMAC
Engine RNG

Non-Volatile
Storage

(e.g. EK, AIK)

Volatile Storage
(e.g. PCRs) Opt-in

STPM

Fig. 1: Proposed Sustainable TPM Architecture

B. Security Functions and Cryptographic Engines

TPM provides the following four main security functions:
Integrity Measurement: With this function the platform

configuration and the processes running on it are measured by
determining their hash values. These values are stored inside
the Platform Configuration Registers (PCRs). A history of
events is kept in the Stored Measurement Log (SML).

Remote Attestation: The trustworthy reporting of the plat-
form configuration to a remote challenger is called remote
attestation. The TPM provides a set of PCR values represent-
ing the system state, which are signed using the Attestation
Identity Key (AIK). The remote party is able to compare the
measurement results with reference values that indicate the
trusted platform configurations. These values are usually listed
in a public Reference Measurement List (RML).

Binding: This function binds data (usually the crypto-
graphic keys) to a given platform. It uses asymmetric encryp-
tion to store the keys in the key hierarchy managed by the
particular TPM.

Sealing: This function expands the binding function by
tying it to the platform state. Therefore, the data which has
been encrypted at some platform state, can only be decrypted
if the platform is exactly in the same state.

All the aforementioned security functions rely on one or
more cryptographic engines. Therefore, breaking one of these
engines leads to a damage of at least one of the security
functions as detailed in Table II. For instance, if the SHA-
1 engine is attacked as presented in [6], neither of the security
functions will be available except for the binding function.
Note that the HMAC engine is not listed in Table II as it
does not directly support any of the main security functions.
However, HMAC is essential for command authentication
and therefore it is intrinsically essential for all the security
functions. HMAC uses the same hash engine already available
on the TPM. Thus, in the case of violation by the hash engine,

all the security functions are compromised, as commands can
not be securely issued anymore.

III. REQUIREMENTS FOR AN ALGORITHM UPDATE ON
STPM

This section addresses the architectural and security require-
ments for an STPM design. A specification of the platform,
definition of the protection profile, and the assumptions for an
update environment using the STPM are presented.

A. Platform Specification

The task of updating a cryptographic algorithm on a TPM
requires a special architecture to support secure updates. It
is known that a conventional TPM is in general an Appli-
cation Specific Integrated Circuit (ASIC) implementation and
therefore cannot be updated after deployment. Given that, the
STPM should feature dynamic (updatable) regions for loading
new cryptographic engines. In contrast, the execution engine to
process the TPM commands and the update algorithm have to
run uninterruptedly and therefore they should reside in a static
(non-updatable) region. In addition, the sensitive cryptographic
key information, such as the Endorsement Key (EK), the
Storage Root Key (SRK), and the Certificates [12], are stored
in the non-volatile memory in a conventional TPM. Further,
the PCRs storing the platform configuration are resettable and
should be stored in volatile memory. Therefore, the STPM
architecture features both static and dynamic regions, along
with volatile and non-volatile memory.

Although reconfigurable devices such as FPGAs seem to be
a candidate platform for an STPM design, they do not satisfy
all the stated requirements. Specifically, most modern FPGAs
are SRAM-based and do not support permanent storage. Some
FPGAs, such as the Spartan-3AN family from Xilinx, contain
on board non-volatile flash memory to keep configuration
data. Such FPGAs, however, belong to the low-price class
and do not support partial reconfiguration as needed for



3

Threat Affected
Components
and Functions

Countermeasure

Side-Channel at-
tacks on RSA

RSA, keygen.,
Volatile and
Non-Volatile
Memory

Side-Channel
aware RSA Im-
plementation

Weak RSA Im-
plementation

RSA, keygen.,
Volatile and
Non-Volatile
Memory

RSA with longer
key

Broken RSA RSA, keygen.,
Volatile and
Non-Volatile
Memory

Non RSA solu-
tion

Broken RSA Key
Generator

EK, SRK, Key
Hierarchy

New Key Gener-
ator

Broken SHA-1 PCRs,
Attestation,
TPM SHA1 com-
mands

New Hash func-
tion

Side-Channel at-
tacks on HMAC

Secret Key, User
Auth Data, In-
tegrity

Side-Channel
aware
HMAC Im-
plementation

Broken HMAC User Auth Data,
Integrity

New HMAC

Side-Channel at-
tacks on TRNG

Random
Numbers,
keygen., Nonces

New RNG
(such as CSRNG)

Insecure
Communication
Interface (LPC)

Keys, PCRs Secure Commu-
nication Interface
& Protocols

Broken Firmware
(ROM)

All
TPM Commands

New Firmware

TABLE I: Threats and Necessary Countermeasures

Security Function Involved Cryptographic
Engines

Integrity Measurement SHA-1
Remote Attestation RSA, SHA-1
Binding RSA
Sealing RSA, SHA-1

TABLE II: Mapping of TPM Security Functions to TPM
Building Blocks

the STPM architecture. Structured ASICs [13] contain both
static and reconfigurable parts. This type of integrated circuit,
however, is mask-programmable, an operation which can only
be performed by the chip vendor. The target platform for
STPM must therefore be a novel one which combines the
techniques of ASICs, parital reconfiguration, and hosts volatile

Host (PC) Update Server

STPM
Communication Channel

Adversary

Bitfile
Library

Fig. 2: Adversarial Model

and non-volatile memories.
For the purposes of an in-depth analysis and a prototypical

design evaluation, we consider an FPGA-based STPM that
includes measures to protect external non-volatile memory as
presented in the sequel.

B. Protection Profile

A special protection profile is considered for the FPGA-
based STPM architecture to achieve a secure algorithm update
and additionally maintain the security level of a conven-
tional TPM. The lack of non-volatile memory (NVM) on
the FPGA can be circumvented by applying the protocol as
proposed by Schellekens et al. in [14]. Using their approach
an authenticated communication between the external multi-
programmable NVM and the system-on-chip is established.
Although an external memory integration is not always the
case, in future implementations of the STPM the non-volatile
memory will reside on the chip itself. Also, in [15], Feller et
al. have presented an algorithm for secure and authenticated
updates in an FPGA-based embedded system. Their approach
uses a block cipher (AES) based authentication scheme to
protect the IPs (intellectual property) transferred from an
update server.

C. Update Environment and Adversarial Model

During STPM update, two parties are involved: the STPM
residing in a computer system and the update server main-
taining the bitfile library, see Figure 2. The computer system
that embeds the STPM is assumed to be part of an enter-
prise environment and is administered by the dedicated staff.
The update server delivers the new cryptographic engines to
be loaded onto the STPM over an insecure network. It is
administered by the STPM manufacturer, who initiates and
provides all the update services. Further, the update server is
assumed to be run in a secure environment. Thus, attacks on
the server itself are not addressed in this paper. The adversary
in this model can be an active attacker who may interfere
with the communication channel and perform attacks on the
STPM. According to the taxonomy of attacks given by Popp
[16], we assume that the attacker is able to perform both
classical cryptanalysis and implementation attacks. While the
classical cryptanalysis includes attacks such as cloning, replay
attacks, and malicious updates, the implementation attacks
exploit side-channel analysis, probing attacks, fault analysis,
and reverse engineering.

The communication between the STPM and the update
server exploits well-established encryption and authentication



4

Static Logic

Exec.
Eng.

Update
Algorithm

Dynamic Logic

Updatable
Crypto
Engines

FPGA

Auth. NVM
EK/SRK Certificates

Key Storage

Prog. Flash

Bitfiles for
Static & Dynamic Logic

Security Boundary

STPM

Fig. 3: STPM Architecture based on an FPGA

techniques to overcome classical cryptanalysis attacks. How-
ever, possible physical and implementation attacks on the
STPM during shipping and after deployment [17] are not
considered in the scope of this paper.

D. The STPM Architecture

Based on the secure design requirements as mentioned in the
previous sections, a novel specific architecture for the STPM
using an SRAM-based FPGA is described in the following.
The FPGA inside the STPM supports the partial reconfigura-
tion feature, to accommodate an uninterruptedly running static
region and a run-time reconfigurable dynamic region simulta-
neously, as depicted in Figure 3. The dynamic region holds
the locations for updatable cryptographic engines. In contrast,
the static region of the FPGA is loaded upon initialization
with the non-updatable components. Additional components,
i.e., non-volatile memory (NVM) and programmable flash
required for an update, are also available inside the STPM.
The persistent cryptographic data is stored in NVM and the
bitfiles for loading into static and dynamic regions of the
FPGA are stored in a flash memory. Although we present
two different types of memory for storage purposes here, the
NVM and the flash memory may technically reside within one
physical component. The storage for bitfiles is rewritable to
support updating the bitfiles from an update server as needed.
All the three components of the STPM, i.e., the FPGA, the
authenticated NVM, and the flash, reside in a single secure
package inside the PC. This secure package, often referred to
as security boundary, avoids physical attacks on the STPM and
the communication between different components inside the
STPM. The most important feature of the STPM is to securely
support hardware update (i.e., cryptographic engine update)
similar to the well-known software update on a PC. Thereby,
it provides a flexible and scalable design of cryptographic
engines on the STPM, which is in general not the case with
conventional TPMs.

IV. TEST CASE: UPDATE OF THE SHA-1 ENGINE

This section presents and discusses an important test-case
relating to the update of the SHA-1 engine on the STPM using
a special data format and a well-defined update algorithm. In
addition to measuring the platform state, the SHA-1 engine
is used for computing signatures and creating key blobs. For
example, in the remote attestation process, a digital signature is
computed for the AIK by the privacy certification authority (a
trusted third party). AIK is an asymmetric session key from the
attester, which can be validated later with the help of a trusted
third party by providing the AIK certificate. The private part
of this AIK is used for signing the PCRs, which are sent to
the challenger along with SML and the AIK certificate. The
challenger takes the PCR values and the AIK certificate for
verification and for establishing the communication with the
attester. If the SHA-1 engine is broken, the newly appended
PCR content is not valid any more and all the generated
signatures and key blobs become useless. Additionally, some
TPM implementations feature a HMAC engine, which uses the
same SHA-1 engine to check the integrity and authenticity of
received packages and to authenticate TPM commands.

A. Update Algorithm

In the following, a description of the update data format
is given first followed by an explanation of the update al-
gorithm itself. For the purpose of authenticating the update
data (UDATA), we use a cipher-based message authentication
code (CMAC) as described in [18]. The cipher used in this
particular case is the AES block cipher and the corresponding
hash function is the AES-hash.

For the next specification we introduce the following nota-
tion:
config The configuration file for the new hash

engine
k Previously exchanged symmetric en-

cryption key for IP protection
E(k, M) Symmetric encryption of message M

with key k
khmac Key used for generating the HMAC
CMAC(khmac, M) CMAC of message M computed with

key khmac

Using this notation, the update data is defined as:

UDATA ⇔ (E(k, config), CMAC((khmac, E(k, config))))

Algorithm 1 details the procedure for loading
the new hash engine onto the STPM. The CMAC
CMAC((khmac, E(k, config))) is computed using the
key khmac on the server side and sent to the STPM along
with the encrypted configuration E(k, config). Verifying
this CMAC by the STPM requires the storage of the HMAC
key khmac in the non-volatile memory within the STPM.
To decrypt the update data, the STPM must be equipped
both with the symmetric cryptographic engine (AES) and the
corresponding symmetric key k. In addition to the symmetric
key and the HMAC key, the non-volatile memory has to store



5

the STPM keys and certificates as depicted in Figure 3. Upon
receiving the update data, they are checked for integrity and
authenticity using CMAC. Then the update data is decrypted
in order to subsequently configure the STPM with the new
hash engine. Finally, an activation of this engine occurs.

Algorithm 1 HASH Engine Update Algorithm
Require: UDATA, symmetric key k, hmac key khmac

1: Load UDATA

2: Compute CMAC((khmac, E(k, config))) and compare
with attached CMAC

3: Decrypt E(k, config)
4: Configure STPM with config
5: Activate new hash engine
6: return Update complete.

B. Updating the SHA-1 Engine on the STPM

Partial reconfiguration (PR) is supported by several SRAM-
based FPGAs. PR means that a portion of the FPGA’s fabric
can be reconfigured while the rest is executing the previous
configuration. For that purpose the FPGA is floorplaned into
dynamic regions, also denoted as partial reconfigurable regions
(PRR), and into a static region. Modules placed inside the
PRR are denoted as partial reconfigurable modules (PRM).
The PRMs assigned to a PRR are mutually exclusive, i.e.,
only one PRM can be assigned to a given PRR at a given
time.

In Figure 4 the dynamic logic of the FPGA contains
two PRRs, so, two distinct PRMs may be placed in each
of these PRRs. The static logic of the FPGA is loaded
with the application parts, which should run uninterruptedly
such as the controller responsible for loading PRMs. In the
proposed architecture, the static logic of the FPGA within
the STPM contains all the non-updatable components such as
the update algorithm and the execution engine. The dynamic
logic contains the regions for loading new replacements of
cryptographic engines, see Figure 3 and Figure 4 for details.

Recall that the partial bitfiles (new cryptographic engines)
to be loaded into the dynamic region are available from the
update server only, see Figure 4. The update process starts with
transferring the partial bitfiles to the STPM flash memory. The
full bitfile for the static region is already available in the flash
memory. The full bitfile is first loaded into the static region
upon initialization. Then, the partial bitfiles are transferred
to the dynamic region. A subsequent replacement of partial
bitfiles is done according to the steps given in Algorithm 1.

C. Implementation Results

A proof-of-concept implementation for the SHA-1 update
on STPM is evaluated on a Xilinx Virtex-5 LX110T FPGA.
Table III summarizes the overall resource consumption of
the static logic implementation, i.e., the update algorithm
and the execution engine. The major parts of this algorithm
are the controller for command execution and the AES core
performing all cryptographic tasks. The internal configuration

Host (PC) Update Server

FPGA
PRM 1

Hash1 v1.0

PRM 2
Hash1 v1.1

PRM 3
Hash2 v1.0

PRM 4
Hash2 v2.0

Bitfile Library

C
om

m
un

ic
at

io
n

C
ha

nn
el

Exec.
Eng.

RAM Config
Port

Update
Algorithm

ROM

Static Logic

PRR 2
Hash2

PRR 1
Hash1

Updatable
Crypto
Engines

Dynamic Logic

NVM Prog.
Flash

Security Boundary

STPM

Fig. 4: Updating the SHA-1 Engine on the STPM

access port (ICAP) is utilized for loading the new cryptograhic
engines into the dynamic logic. Also, the control flow and
the corresponding command execution to provide the TPM
functionality, can be run on a softcore processor such as
Xilinx’s MicroBlaze. All together, the static logic consumes
only a fraction of the available FPGA resources.

Reg. LUT 36Kbit
BRAM

AES-128 524 899 5
Hash-Core 289 138 0

HMAC-Core 294 184 0
Controller 662 453 0
PR ICAP 170 168 2

Update Algorithm 1939 1842 7
MicroBlaze CPU (Exe. Engine) 2326 2704 4

Total Static Logic 4265 4546 11

TABLE III: Resource Consumption of Static Logic of STPM

Register LUT 36Kbit
BRAM

max
Freq.
(MHz)

RSA 1275 1924 0 78.927
SHA-1 1013 1754 0 156.145
HMAC 1722 2353 0 156.145

RNG 1424 1248 5 283.688
Total TPM Engines 5434 7279 5

TABLE IV: Resource Consumption of Cryptographic Engines

Table IV summarizes the overall resource consumption
of all the updatable cryptographic algorithms as depicted in
Figure 1. These algorithms are loaded into the dynamic logic
of the FPGA during the STPM operation. This logic region of
the FPGA occupies the major portion of the FPGA because



6

the static logic is very small in size. Therefore, the new crypto
algorithms to be loaded are provided with enough resources.
Thus, with reference to Table III and Table IV, the current
STPM design implementation occupies only a few of the
available resources on the considered FPGA.

V. REGAINING TRUST

In this section we describe how to regain trust in the system
after a hash engine has been updated. In Table II it was
outlined that all the security functions except for binding are
directly dependent on the hash engine. Therefore, to maintain a
trusted environment, we present the necessary measures based
on the specific requirements of each security function for trust
enforcement.

A. Integrity Measurement

Integrity measurement is a basic function to compute the
hash values stored in PCRs, which represent the current system
state. In the case of an engine update, this representation
of the system state is no more valid, because it had been
computed with the old hash engine. This leads to an unde-
fined representation of the system state, where it cannot be
determined whether the system is in a trustworthy state or
not. Even if there are no changes in hardware or software, the
current PCR contents will differ from future values computed
with the updated hash engine. Also, due to the fact that the
measurement has been performed using the old hash engine,
the PCR contents are prone to collision attacks. However, after
updating the hash engine, the whole platform configuration
is recomputed and stored in the PCRs. Because most of the
PCRs are not resettable, the system has to be rebooted before
the new measurements can be considered as trustworthy. To
indicate the trustworthiness, the system state has again to be
compared to the reference values.

B. Remote Attestation

A trusted platform is able to attest the current system
state to any requester. Usually, the trusted system states are
stored in RMLs (Reference Measurement Lists) generated
by the IT-department. In the case of an update of the hash
engine, these RMLs become invalid. Therefore, the reference
list has to be recomputed by means of the updated hash
engine. Furthermore, the contents of the PCRs have to be
reevaluated in order to reflect the update in the stored hash
values. Remote attestation is the only function, which is able
to directly distinguish between trustworthy and untrustworthy
system states.

C. Binding

Binding is used to encrypt sensible data with keys, which are
available on a specific TPM only. The binding function can
be considered to be independent of the trust someone puts
into the system. Of course, the confidential data has to be
protected properly for which the binding procedure itself does
not provide any measures to reflect the trustworthiness of the
current state. Therefore, the update of the hash engine does
not affect the binding function directly.

D. Sealing

Sealing uses the current system state to protect sensible
data. Sealed data can only be unsealed if the system is in the
same state as during the sealing procedure. After an update
of the hash engine the data cannot be unsealed, because the
PCR content has changed. To tackle this problem, a resealing
process must be performed as detailed below.

E. Data Resealing

Data resealing is necessary after a hash engine update to
maintain the availability of sealed data. Data resealing of
remote data is necessary if the PCR values change, but the
system is still in a trusted state. This usually happens only
when software updates were performed.

As the sealing function relies on the content of PCRs, we
propose a procedure to reseal data to the updated PCR values
that represent the current state of the system.

reseal⇔ unseal(Hashold) + seal(Hashnew) (1)

Equation 1 shows that prior to sealing the data with the
new hash engine (Hashnew), it has to be unsealed first by
using the outdated hash function (Hashold). But the PCRs
currently contain the measurements of the system state with
the outdated hash engine. Therefore, to perform resealing, the
current system state has to be made available in both repre-
sentations computed by Hashold and Hashnew, respectively.
To achieve this, along with the two hash engines, two sets
of PCRs (located in volatile memory), are needed to store
both representations of the system state. For this purpose the
STPM architecture features the operation of two hash engines
in parallel, as detailed in Figure 4, to accelerate resealing.
After a reboot action, the resealing procedure is performed
according to Equation 1.

Although the data resealing aspect has been considered by
Kühn et al. in [19], they concentrate mainly on the hardware
and software life cycle as commonly found in enterprises.
Their procedures assume that the system state is trustworthy
even after a software update, which does not cover the case
of a hash engine hardware update that affects the integrity
measurement process itself. Therefore, to cope with the update
of components of the TPM such as the hash engine, the
procedures presented in [19] are not applicable. Instead, new
dedicated measures as described in this work are required.

F. HMAC

Every STPM command is being authenticated using the
HMAC function based on the protocols OSAP and OIAP
as specified by TCG. As the HMAC function uses the hash
engine, it has to be fitted to the new hash engine in the
case of an update. Secure communication to the STPM can
be continued using two different approaches. First, all new
messages, which have an HMAC attached, have to use the
new hash function to create the authentication code. Running
sessions using OIAP or OSAP can be terminated, if the
hash function has been exchanged and the session has to
be reinitiated afterwards. The overhead introduced by this



7

procedure is tolerable, because the algorithm update will not
happen too frequently. The second approach is to use the
mode of operation introduced by Bellare et al. in [20]. They
presented a proof for the usage of HMAC functions even
though the hash engine looses its collision resistance property.
Therefore, running sessions can still exploit the old hash
engine, while newly initiated sessions operate the updated hash
engine.

G. Signatures

Signatures are used during the remote attestation process
to attest the state of the system to a remote challenger. For
this, the PCR values are signed using the AIK and sent to
the challenger for verification. In general, signature creation
uses the hash engine, as presented in [21], whereas collisions
of the hash engine directly translate to forgeries. However,
in this paper the signatures are created using the mode of
operation presented in [22] and therefore are considered to
be valid despite the fact that the hash engine is not collision
resistant. Even though the digital signatures are still valid,
new messages should be signed using the new hash engine.
The signatures have to carry some information showing the
algorithm that was used to create it, as done in X.509 [23]
certificates. Also, all certificates that are used during the boot
sequence of the system might have to be updated to fit the
new signature algorithm.

VI. CONCLUSION

A novel architecture for updating the cryptographic engines
embedded in a TPM was presented in this paper. We first
analyzed possible threats to the TPM and the implications
of these threats on its security functions. From this analysis,
we investigated the architectural and security requirements for
performing an update of cryptographic engines on the STPM.
Relying on the proposed STPM architecture, we defined a
special format for update data and designed an algorithm
for securely updating the cryptographic engines. In addition
to providing an updatability feature, the STPM stays secure
against the possible attacks, which were formulated using
assumptions on both update environment and the adversaries.
Later, using the update algorithm and the STPM, a complete
test case for updating the SHA-1 engine with the resource
consumption values on a Virtex5 FPGA has been presented.
Based on the implications caused by the update of the hash
engine, we performed an analysis of the steps to be taken
to regain the trust in the platform. The implications resulting
from updating other cryptographic engines are part of future
work.

REFERENCES

[1] Trusted Computing Group, Incorporated, “TCG specification archi-
tecture overview,” http://www.trustedcomputinggroup.org/resources/tcg
architecture overview version 14, 2007.

[2] IBM Research, Inc., “Virtual Trusted Platform Module,”
http://domino.research.ibm.com/comm/research projects.nsf/pages/
ssd vtpm.index.html, 2008.

[3] T. Eisenbarth, T. Guneysu, C. Paar, A. Sadeghi, M. Wolf, and R. Tessier,
“Establishing Chain of Trust in Reconfigurable Hardware,” in Proceed-
ings of IEEE Symposium on Field-Programmable Custom Computing
Machines, 2007, pp. 289–290.

[4] B. Glas, A. Klimm, O. Sander, K. Muller-Glaser, and J. Becker, “A
System Architecture for Reconfigurable Trusted Platforms,” in Proceed-
ings of IEEE/ACM Int. Conference on Design, Automation and Test in
Europe, 2008, pp. 541–544.

[5] J.-E. Ekberg and M. Kylänpää, “Mobile Trusted Module (MTM) - an
Introduction,” Nokia Research Center, Helsinki, Tech. Rep. NRC-TR-
2007-015, Nov. 2007, http://research.nokia.com/files/NRCTR2007015.
pdf.

[6] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full SHA-1,” in
Advances in Cryptology–CRYPTO 2005. Springer, 2005, pp. 17–36.

[7] T. Finke, M. Gebhardt, and W. Schindler, “A New Side-Channel
Attack on RSA Prime Generation,” in Proceedings of the 11th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer-Verlag, 2009, pp. 141–155.

[8] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga, “Replay attack in
TCG specification and solution,” in Proceedings of the 21st Annual IEEE
Computer Security Applications Conference, 2005, pp. 11–137.

[9] A. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy,
“TCG inside?: A note on TPM specification compliance,” in Proceedings
of the first ACM workshop on Scalable trusted computing. ACM, 2006,
pp. 47–56.

[10] National Institute of Standards and Technology, Recommendation for
the Transitioning of Cryptographic Algorithms and Key Lengths,
http://csrc.nist.gov/publications/drafts/800-131/draft-sp800-131
spd-june2010.pdf, 2010.

[11] Trusted Computing Group, Incorporated, “Features under consideration
for the next generation of tpm,” http://www.trustedcomputinggroup.
org/resources/summary of features under consideration for the next
generation of tpm, 2009.

[12] ——, “Trusted Platform Module (TPM) specifications,” http://www.
trustedcomputinggroup.org/resources/tpm main specification, 2010.

[13] K. Wu and Y. Tsai, “Structured ASIC, evolution or revolution?” in
Proceedings of the ACM International Symposium on Physical Design.
ACM, 2004, pp. 103–106.

[14] D. Schellekens, P. Tuyls, and B. Preneel, “Embedded Trusted Computing
with Authenticated Non-Volatile Memory,” in Proceedings of Trusted
Computing - Challenges and Applications, 2008, pp. 60–74.

[15] T. Feller, S. Malipatlolla, D. Meister, and S. A. Huss, “TinyTPM: A
Lightweight Module aimed to IP Protection and Trusted Embedded Plat-
forms,” in Proceedings of IEEE International Symposium on Hardware
Oriented Security and Trust (HOST 2011), Jun. 2011.

[16] T. Popp, “An Introduction to Implementation Attacks and Counter-
measures,” in Proceedings of IEEE/ACM International Conference on
Formal Methods and Models for Co-Design (MEMOCODE’09), 2009,
pp. 108 –115.

[17] Trusted Computing Group, Incorporated, “TCG protection profile pc
client specific trusted platform module tpm family 1.2; level 2,” http:
//www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf, 2008.

[18] National Institute of Standards and Technology, Recommendation for
Block Cipher Modes of Operation: The CMAC Mode for Authenti-
cation, http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.
pdf, 2005.

[19] U. Kühn, K. Kursawe, S. Lucks, A.-R. Sadeghi, and C. Stüble, “Secure
Data Management in Trusted Computing,” in Proceedings of Crypto-
graphic Hardware and Embedded Systems, 2005, pp. 324–338.

[20] M. Bellare, “New proofs for NMAC and HMAC: Security with-
out collision-resistance,” in Proceedings of Advances in Cryptology
(CRYPTO’06), 2006, pp. 602–619.

[21] National Institute of Standards and Technology, “Digital Signature
Standard (DSS),” National Institute of Standards and Technology, Tech.
Rep., June 2009. [Online]. Available: http://csrc.nist.gov/publications/
fips/fips186-3/fips 186-3.pdf

[22] S. Halevi and H. Krawczyk, “Strengthening digital signatures via
randomized hashing,” Advances in Cryptology, pp. 41–59, 2006.

[23] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), Internet Engineering Task Force, May 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5280.txt

http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14
http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_vtpm.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_vtpm.index.html
http://research.nokia.com/files/NRCTR2007015.pdf
http://research.nokia.com/files/NRCTR2007015.pdf
http://csrc.nist.gov/publications/drafts/800-131/draft-sp800-131_spd-june2010.pdf
http://csrc.nist.gov/publications/drafts/800-131/draft-sp800-131_spd-june2010.pdf
http://www.trustedcomputinggroup.org/resources/summary_of_features_under_consideration_for_the_next_generation_of_tpm
http://www.trustedcomputinggroup.org/resources/summary_of_features_under_consideration_for_the_next_generation_of_tpm
http://www.trustedcomputinggroup.org/resources/summary_of_features_under_consideration_for_the_next_generation_of_tpm
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf
http://www.commoncriteriaportal.org/files/ppfiles/pp0030b.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.ietf.org/rfc/rfc5280.txt

	Introduction and Related Work
	Threats to the TPM and their Implications
	Threat Matrix
	Security Functions and Cryptographic Engines

	Requirements for an Algorithm Update on STPM
	Platform Specification
	Protection Profile
	Update Environment and Adversarial Model
	The STPM Architecture

	Test Case: Update of the SHA-1 Engine
	Update Algorithm
	Updating the SHA-1 Engine on the STPM
	Implementation Results

	Regaining Trust
	Integrity Measurement
	Remote Attestation
	Binding
	Sealing
	Data Resealing
	HMAC
	Signatures

	Conclusion
	References

